Далее начинаются нюансы.
Здоровый и зрелый электорат в день выборов подвержен разным случайностям: болезням, свадьбам, отпускам, депрессиям, путешествиям и командировкам.
Поэтому равномерного распределения явки ждать не приходится, но случайные процессы, как правило (не всегда, но как правило!) подчиняются закону нормального распределения. Поэтому создадим новый протокол избирательной комиссии, когда все голосуют так же, как и в первом случае, но гистограмма распределения явки напоминает собой нормальное распределение.
Протокол представлен в таблице 2, а соответствующие графики - на рисунках 4, 5 и 6.
Как мы видим случайности и катаклизмы в здоровом демократическом обществе вносят некоторую нелинейность в зависимость процентов голосов от явки избирателей, но на монотонноть графиков они не влияют.
Перейдем теперь от практически идеального гражданского общества к неидеальному.
Неидеальность его будет заключаться в том, что общие политические пристрастия (50, 40 и 10 процентов) сохраняются только для списочного состава избирателейв целом, а решение о том, приходить ли голосовать, принимается каждым избирателем несколько по другим принципам.
линк на оригинал - http://letopis.kulichki.com/2011/10-2011/nom2043.htm
Рассмотрение неидеальной электоральной ситуации целесообразно начать с третьей партии.
Итак, мы считаем, что третью партию (партию несистемной оппозиции) по-прежнему поддерживает 10% избирателей, то есть по 300 человек на каждом избирательном участке. Но из них десятая часть (то есть процент от всей электоральной группы этой партии - 30 человек) - это совершенно особые избиратели - они максимально активны.
Они ВСЕГДА приходят на выборы в полном составе, всегда приходят раньше всех и всегда голосуют все как один!
КПСС позавидовала бы такой партийной дисциплине...
Остальные девять десятых (назовем их для краткости "политическим обывателями") ведут себя также как и в самом первом случае, то есть их явка на избирательные участки есть величина переменная. Электоральная группа второй партии (партии системной оппозиции; например, в качестве аналога можно взять Партию Пенсионеров) действует точно также: отличия только в цифрах.
Десятая часть активистов (то есть четыре процента от всей электоральной группы этой партии) приходят голосовать на всех участках дисциплинированно и полностью.
А оставшиеся голосующие приходят голосовать так же, как и в первом случае, то есть за партию отдается 30% голосов от явившихся на избирательные участки.
В сумме это будет составлять заданные изначально 40%. Для первой же партии будем считать, что активистов она не имеет или имеет столь мало, что ими можно пренебречь, но что голосовать за нее будет ровно то же число избирателей, что и в первом случае. Естественно, что при таком раскладе цифры в графе общей явки в протоколе будут выглядеть несколько по-другому, чем в первом случае, хотя для каждого участка число явившихся будет по-прежнему равно сумме отданных голосов. Для наглядности введем в протокол дополнительные подграфы для второй и третьей партий: "за-активисты" и "за-обыватели"; общее число "за" для этих партий будет равно сумме двух подграф. Протокол избирательной комиссии для такого случая представлен в таблице 3, а на рис. 7 показано, как выглядит распределение процентов голосов от списочного состава избирателей. Линии 2 и 3 партий приподняты над осью абсцисс ровно на величину постоянной составляющей (числа активистов для каждой партии), но больше никаких неожиданностей мы не видим. Неожиданности начинаются дальше: график на рис. 8 моментально и навсегда опровергаеттак называемый "метод Собянина-Суходольского", который, как известно, гласит:
"если при увеличении явки число голосов растет в пользу только одного кандидата или партии, это является следствием фальсификаций." Пресловутый (и никем не доказанный!) "метод Собянина-Суходольского" явно и безоговорочно неверен, потому что на данном этапе мы моделируем принципиально честные выборы, а изменили, да и то незначительно, только модель поведения электората. Притом в пользу второй и третьей партий. На самом деле появившаяся "неожиданность" никакая не неожиданность: равномерная активность голосующих активистов очень заметна при низких общих явках и практически незаметна (имеет малую долю) при высоких.
Поэтому в правой части диаграммы кривые почти горизонтальны и почти ничем не отличаются от графика на рис. 1.
Резкий же рост кривой сторонников первой партии объясняется тем, что при низкой явке голосов за нее значительно меньше, чем за оппозицию, а с ростом явки это соотношение выравнивается. А теперь сравните полученный нами искусственный график с графиком, полученным при обработке реальных выборов в Мосгордуму в 2009 году, по поводу которого было столько истерических и спекулятивных обвинений в адрес избирательных комиссий. Сильно они отличаются? Там, где есть достаточная статистика для достоверного вычисления математического ожидания (текущего среднего), они не отличаются вовсе! (И это, повторяю, при том, что никакого жульничества при составлении протоколов в модель пока не заложено.) Там, где статистики не хватает (до 18% явки и более 65%), там - да, отличается, но в этих местах о закономерностях и сказать ничего нельзя: чистый хаос. Что же касается определенной несхожести графиков на рис. 8 с реальными результатами (модельные кривые пересекаются друг с другом, а реальные - нет), то это объясняется несоответствием предполагаемого числа "активистов" и их реального числа.
Это расхождение несложно уменьшить простым подбором исходных условий.
Вот, например, что получится вот для такого протокола голосования (таблица 4). Тем не менее, надо заметить, что схожесть графиков на рис. 9 и 10 не может служить доказательством отсутствия фальсификаций при голосовании 2009 года, хотя приписываемая им масштабность ("чудовищные подтасовки", "не менее, чем на трети избирательных участков") становится более, чем сомнительной. Исходя из таблицы 2 и графиков 3-5 можно предположить, что при переходе к нормальному распределению явки полученные кривые принципиально не изменятся.
Поэтому рассмотрение графиков для нормального распределения явки рассматривать не будем. Значительно интереснее, попробовать с помощью каких-либо крупных фальсификаций попробовать получить из идеального графика (рис. 1) реальный (рис. 9).
Или хотя бы приближенный к реальному, как на рис. 8.
Итак, с помощью каких-либо крупных фальсификаций попробуем получить из идеального графика (рис. 1) реальный (рис. 9).
Или хотя бы приближенный к реальному, как на рис. 8. При этом будем считать, что фальсификации проводятся только в пользу первой партии вне зависимости от места, которое она займет при честных выборах.
Поводов для масштабной фальсификации мне удалось придумать только два:
1. Прямое приказание "сверху";
2. Инициатива снизу ("чтобы наши показатели были не хуже других").
Начнем с первого: прямое приказание начальства.
Типа, "всем избирательным комиссиям произвести вброс бюллетеней за партию 1 в размере не менее десяти процентов от списочного состава избирателей".
Все берут под козырек и выполняют. Ровно по 10%.
Для этого возьмем таблицу 1 и добавим в графу "За 1 партию" по триста голосов к уже имеющимся (таблица 5).
Процент голосовавших за первую партию (рис. 11) сразу поднимается на невообразимую величину!
Знатоки арифметики начинают подозревать, каким в результате этой фальсификации получится следующий график, для остальных - его вид будет довольно неожиданным.
Потому что зависимость поданных голосов от явки приобретает такой вид (рис. 12):
Согласно пресловутому "методу Собянина-Суходольского" произошла явная и недвусмысленная фальсификация в интересах второй и третьей партий, но никак не первой! |
(Впрочем, если вчитаться в формулировку "метода Собянина-Суходольского":
"если при увеличении явки число голосов растет в пользу только одного кандидата или партии, это является следствием фальсификаций",
то можно понять, что рост голосов в пользу двух и более кандидатов или партий фальсификацией не является.
Блестящий и "непротиворечиво" сформулированный, "метод", оправдывающий явную фальсификацию в интересах лидирующей партии!
Но это - в скобках.) |
|
Однако подозревать ЦИК, строго подконтрольный (по общему мнению) партии власти, в саботаже и тайном пристрастии к оппозиции просто глупо. Да и что значит "подозревать"?
В данном случае мы сами себе ЦИК, сами составили идеальный протокол и сами его сфальсифицировали.
Кто хочет, может проделать все эти действия самостоятельно и посмотреть на результат.
Дело ведь в простой арифметике, а не в указаниях "сверху".
Те, кто разобрался, как влияет на поведение графиков наличие дисциплинированных партийных активистов, этот результат удивлять не должен.
Для остальных поясню еще раз: "вброс" бюллетеней за первую партию ничем не отличаетсяот посещения избирательных участков активистами этой партии, если бы они у нее были.
А "вброшенные" голоса больше влияют на участки с меньшей реальной явкой, поскольку их доля в общем числе бюллетеней на этих участках больше.
Итак, строго выполненные начальственные указания о фальсификациях в интересах наиболее популярной партии ни к чему хорошему не приводят и искажают графики прямо противоположным образом, чем в реальном варианте (рис. 9).
Попробуем второй алгоритм, который называется "рвение низовых организаций".
Он заключается в том, что избирательные комиссии с низкой явкой искусственно подтягивают оную до приличных величин.
Притом (опять же по общему мнению) беспардонно подыгрывая "партии власти", каковой мы условились считать первую партию.
Для определенности будем считать, что в тех комиссиях, где общая явка составляет менее четверти от списочного состава, вбрасывают такое количество бюллетеней (с проставленными галочками за первую партию), чтобы явка стала, по крайней мере, не менее 25%.
Берем опять протокол номер 1 и фальсифицируем его соответствующим образом (таблица 6).
Результат практически тот же самый, то есть полученные результаты на реальный график(рис. 9) не похожи.
И не просто не похожи, а не похожи весьма кардинально...
линк на оригинал - |
http://letopis.kulichki.com/2011/10-2011/nom2045.htm
Однако, может быть, удастся с помощью масштабных фальсификаций в интересах первой партии усугубить "отвратительное" поведение модели выборов с участием партийных активистов (рис. 8)? Возьмем тогда данные таблицы 3 (а это, как мы помним, результаты голосования с привлечением "активистов" второй и третьей партий) и фальсифицируем ее двумя вышеописанными способами (таблицы 7 и 8).
Кстати, забавно, что масштабный "вброс" голосов за первую партию приближает график на рис. 16 к идеальному виду (рис. 1), что еще раз подтверждает, что неправомерно судить о наличии или отсутствии фальсификаций по графикам такого типа.
Между прочим, на рис. 18 видно, что как только заканчивается фальсификация, кривые принимают исходный вид, то есть фальсификация такого типа приводит к нарушению монотонности кривых. Таким образом, поведение графиков идеальных голосований с учетом партийных активистов(рис. 8) в результате явных фальсификаций (фальсификация "сверху" и фальсификация "снизу") меняется практически на противоположное.
И это не фокусы, это всего лишь арифметика.
Для тех же, кто не в ладах с арифметикой с самого первого класса поясняю в третий раз.
Нет никакой принципиальной разницы между "вбросами" бюллетеней и наличием избирательной гвардии ("активистов"), создающих ту же самую постоянную составляющую голосов, что и "вбросы".
Эта постоянная составляющая даже небольшого числа голосов более заметна при низкой общей явке, поскольку тогда ее относительная доля в числе голосов БОЛЬШЕ, и почти не влияет на голосование при достаточно большой общей явке.
Я полагаю, что теперь уже всем понятно, что поскольку фальсификации в интересах первой партии (волютнаристически назначенной нами "партией власти") приводят к противоположному ожидаемым изменениям графиков, то нет никаких оснований предполагать, что что-то изменится с изменением популярности первой партии, вплоть до ее превращения в аутсайдеры.
Однако для чистоты эксперимента стоит такие протоколы создать и соответствующие графики построить.
Кроме того, нужно отметить, что фальсифицировать результаты выборов в пользу партии, которая имеет большинство голосов при самых наичестнейших выборах, довольно глупо.
Наличие такого рода фальсификаций при проведении реальных выборов нельзя полностью исключить, но их смысл весьма сомнителен. |
(Правда, до самого подсчета результатов голосования никто не может быть уверен в их исходе, ибо прогнозы прогнозами, а реальность реальностью, которая может требовать "подстаховки".) |
|
Значительно "полезнее" было бы организовать фальсификации в интересах партии, которая несколько не дотягивает до большинства, которого в свою очередь ей хочется еще больше. Рассмотрим такой вариант для обоих методов фальсификации...
линк на оригинал - http://letopis.kulichki.com/2011/10-2011/nom2046.htm
Рассмотрим влияние на графики фальсификации в пользу НЕ лидера честных выборов (для обоих методов фальсификации).
Чтобы не пересчитывать все данные заново (а вам - не проверять их заново), все принятые голосования за вторую и третью партию оставим неизменными, а будем снижать популярность первой партии. Для начала (пункт "А") снова возьмем данные таблицы 3 и снизим принятые 50% за первую партию до уровня второй партии, но без наличия активистов (графа "За-обыв-2").
Таким образом мы переведем ее их лидеров выборной гонки на второе место, поскольку вторая партия, имея те же самые 30% голосов политических обывателей, имеет еще и голоса от "активистов" ( таблица 9 и рис. 19 и 20). Сравните графики на рис. 20 и на рис. 8: характер кривых не изменился, но первая партия лидером теперь не становится, - все честно. А теперь фальсифицируем этот протокол по указаниям "сверху", чтобы первая партия по общему числу голосов выборы бы выиграла.
И для гарантии вбросим за нее не по 300, а 500 бюллетеней, заполненных нужным образом ( таблица 10 и рис. 21 и 22). "Никак нет! - бодро рапортуют Собянин и Суходольский, - Рост поданных голосов в зависимости от явки наблюдается в пользу двух партий, поэтому никаких фальсификаций нет!" А на нет, как говорится, и суда нет, и видя график противоположный реальному (рис. 9)"исследователи" от оппозиции должны быть полностью удовлетворены. Займемся теперь фальсификацией второго типа.
В результате этой фальсификации в таблице 9 изменится не вся графа "За 1 партию", а только ее верхняя часть ( таблица 11 и рис. 23 и 24). Как и следовало ожидать, никаких принципиальных изменений в графиках не произошло, за исключение того, что кривые, характеризующие первую партию, стали пересекать соответствующие кривые для второй партии. И для порядка, исключительно из принципа доводить все до конца, проведем соответствующие вычисления и построения для аутсайдера честных выборов, начиная с пункта "А" ( таблицы 12, 13 и 14 и рисунки 25-30).
Теперь возникает вопрос: а возможна ли такая фальсификация результатов работы избирательных комиссий, которая не вызвала бы никаких претензий у последующих изучателей их работы путем исследования графиков? Ответ...
линк на оригинал - http://letopis.kulichki.com/2011/10-2011/nom2047.htm
Ответ: возможна, и очень простая.
Для этого избирательным комиссиям должно быть строго-настрого приказано "вбросить" заранее нужным образом отмаркированных бюллетеней в числе, равном половине общей явки на данном участке.
И, разумеется, это указание должно быть идеально выполнено. В результате из Идеального протокола (таблица 1) мы получим сфальсифицированный протокол (таблица 15), в котором у двадцати процентов участков общая явка превышает сто процентов!
А ее графики (рис. 31 и 32) продолжают оставаться идеальными!
(Сбой в начале второго графика объясняется тем, что нельзя вбросить два с половиной бюллетеня.) Предположим теперь, что начальники избирательных участков - люди не только дисциплинированные, но и грамотные. Они понимают, что за стодвадцатипроцентную явку по головке не погладят, и поэтому вносят в начальственные указания свой творческий вклад (таблица 16). Увы! Реализм не бывает идеальным и наоборот: графики сразу перестают быть идеальными и отражают реальную картину (рис. 33 и 34). И все-таки общая тенденция сохраняется: там, где происходит фальсификация за первую партию, график голосов за нее в зависимости от явки падает, а не растет, как на рис. 9. Потому что арифметику не обманешь.
В этом месте мои возможные оппоненты обязательно начнут говорить о физической невозможности строгого выполнения указаний о "вбросах".
И я с ними совершенно согласен: на избирательных участках вечно толкутся какие-то люди, - избиратели, представители, наблюдатели, - которые мешают членам избирательных комиссий работать и организовать Идеально сфальсифицированные выборы.
Кроме того, наверняка имеются элементы разгильдяйства среди самих работников избирательных комиссий, да и просто арифметические ошибки при подсчете бюллетеней.
Все это правильно. Но модель - это всегда упрощение и идеализация.
Задача моделирования: показать закономерности чего-либо при различных условиях протекания этого самого "чего-либо".
Если кому-то кажется, что все изложенное несправедливо, неверно и неполно, то каждый может повторить указаный путь самостоятельно.
То есть написать свой Идеальный протокол и получить соответствующие графики.
А также вносить в него любые изменения (честные и жульнические) и смотреть, к чему они приводят.
Но прошу помнить, что главно задачей каждого фальсификатора является не только фальсифицировать исходные данные, но и не попасться при этом.
Поэтому условия составления протоколов должны соответствовать небольшому количеству несложных правил (примечание).
В противном случае протоколы легко опротестовываются в суде, и результаты выборов объявляются недействительными.
Что же касается возможной неполноты исследований, то вам, уважаемые оппоненты, и карты в руки.
Дополняйте, уточняйте и опровергайте.
Только цифрами и арифметикой, а не мантрами и заклинаниями.
Потому что задача стоит совершенно простая: взять протокол Идеальных выборов и путемлюбых фальсификаций в пользу первой партии постараться добиться графика, похожего на реальный (рис. 9).
Притом вовсе не обязательно использовать только рассмотренные типы фальсификаций, можно и нужно придумывать свои, но крайне желательно, чтобы они были технически выполнимы в реальных условиях.
Успехов!
Моделирование выводов
1. Предложена простая и логичная гипотеза поведения электората в условиях политически неоднородного общества, которая приводит к графикам, в среднем похожим на реальные результаты и не требует применения гипотезы о фальсификациях.
2. Показано, что любые "вбросы" бюллетеней в пользу любой партии приводит, разумеется, к увеличению процента голосов за данную партию в целом, но искажает график распределения поданных голосов в зависимости от процента явки, уменьшая их значение с ростом процента явки.
3. На моделях опровергнут пресловутый (и ранее не доказанный) "метод Собянина-Суходольского".
PS
Стоило бы также поговорить о "нормальных" и "ненормальных" распределениях явки сознательных и несознательных избирателей.
Если у меня будет время, я постараюсь заняться и этим вопросом.
А что из этого получится, заранее трудно сказать...
|
|